Score: | Week 3 | ANOVA and Paired T-test | |||||||||||||||||||||||||
At this point we know the following about male and female salaries. | |||||||||||||||||||||||||||
a. | Male and female overall average salaries are not equal in the population. | ||||||||||||||||||||||||||
b. | Male and female overall average compas are equal in the population, but males are a bit more spread out. | ||||||||||||||||||||||||||
c. | The male and female salary range are almost the same, as is their age and service. | ||||||||||||||||||||||||||
d. | Average performance ratings per gender are equal. | ||||||||||||||||||||||||||
Let’s look at some other factors that might influence pay – education(degree) and performance ratings. | |||||||||||||||||||||||||||
<1 point> | 1 | Last week, we found that average performance ratings do not differ between males and females in the population. | |||||||||||||||||||||||||
Now we need to see if they differ among the grades. Is the average performace rating the same for all grades? | |||||||||||||||||||||||||||
(Assume variances are equal across the grades for this ANOVA.) | You can use these columns to place grade Perf Ratings if desired. | ||||||||||||||||||||||||||
A | B | C | D | E | F | ||||||||||||||||||||||
Null Hypothesis: | |||||||||||||||||||||||||||
Alt. Hypothesis: | |||||||||||||||||||||||||||
Place B17 in Outcome range box. | |||||||||||||||||||||||||||
Interpretation: | |||||||||||||||||||||||||||
What is the p-value: | |||||||||||||||||||||||||||
Is P-value < 0.05? | |||||||||||||||||||||||||||
Do we REJ or Not reject the null? | |||||||||||||||||||||||||||
If the null hypothesis was rejected, what is the effect size value (eta squared): | |||||||||||||||||||||||||||
Meaning of effect size measure: | |||||||||||||||||||||||||||
What does that decision mean in terms of our equal pay question: | |||||||||||||||||||||||||||
<1 point> | 2 | While it appears that average salaries per each grade differ, we need to test this assumption. | |||||||||||||||||||||||||
Is the average salary the same for each of the grade levels? (Assume equal variance, and use the analysis toolpak function ANOVA.) | |||||||||||||||||||||||||||
Use the input table to the right to list salaries under each grade level. | |||||||||||||||||||||||||||
Null Hypothesis: | If desired, place salaries per grade in these columns | ||||||||||||||||||||||||||
Alt. Hypothesis: | A | B | C | D | E | F | |||||||||||||||||||||
Place B55 in Outcome range box. | |||||||||||||||||||||||||||
What is the p-value: | |||||||||||||||||||||||||||
Is P-value < 0.05? | |||||||||||||||||||||||||||
Do you reject or not reject the null hypothesis: | |||||||||||||||||||||||||||
If the null hypothesis was rejected, what is the effect size value (eta squared): | |||||||||||||||||||||||||||
Meaning of effect size measure: | |||||||||||||||||||||||||||
Interpretation: | |||||||||||||||||||||||||||
<1 point> | 3 | The table and analysis below demonstrate a 2-way ANOVA with replication. Please interpret the results. | |||||||||||||||||||||||||
BA | MA | Ho: Average compas by gender are equal | |||||||||||||||||||||||||
Male | 1.017 | 1.157 | Ha: Average compas by gender are not equal | ||||||||||||||||||||||||
0.870 | 0.979 | Ho: Average compas are equal for each degree | |||||||||||||||||||||||||
1.052 | 1.134 | Ha: Average compas are not equal for each degree | |||||||||||||||||||||||||
1.175 | 1.149 | Ho: Interaction is not significant | |||||||||||||||||||||||||
1.043 | 1.043 | Ha: Interaction is significant | |||||||||||||||||||||||||
1.074 | 1.134 | ||||||||||||||||||||||||||
1.020 | 1.000 | Perform analysis: | |||||||||||||||||||||||||
0.903 | 1.122 | ||||||||||||||||||||||||||
0.982 | 0.903 | Anova: Two-Factor With Replication | |||||||||||||||||||||||||
1.086 | 1.052 | ||||||||||||||||||||||||||
1.075 | 1.140 | SUMMARY | BA | MA | Total | ||||||||||||||||||||||
1.052 | 1.087 | Male | |||||||||||||||||||||||||
Female | 1.096 | 1.050 | Count | 12 | 12 | 24 | |||||||||||||||||||||
1.025 | 1.161 | Sum | 12.349 | 12.9 | 25.249 | ||||||||||||||||||||||
1.000 | 1.096 | Average | 1.02908333 | 1.075 | 1.052042 | ||||||||||||||||||||||
0.956 | 1.000 | Variance | 0.00668645 | 0.00652 | 0.006866 | ||||||||||||||||||||||
1.000 | 1.041 | ||||||||||||||||||||||||||
1.043 | 1.043 | Female | |||||||||||||||||||||||||
1.043 | 1.119 | Count | 12 | 12 | 24 | ||||||||||||||||||||||
1.210 | 1.043 | Sum | 12.791 | 12.787 | 25.578 | ||||||||||||||||||||||
1.187 | 1.000 | Average | 1.06591667 | 1.065583 | 1.06575 | ||||||||||||||||||||||
1.043 | 0.956 | Variance | 0.00610245 | 0.004213 | 0.004933 | ||||||||||||||||||||||
1.043 | 1.129 | ||||||||||||||||||||||||||
1.145 | 1.149 | Total | |||||||||||||||||||||||||
Count | 24 | 24 | |||||||||||||||||||||||||
Sum | 25.14 | 25.687 | |||||||||||||||||||||||||
Average | 1.0475 | 1.070292 | |||||||||||||||||||||||||
Variance | 0.00647035 | 0.005156 | |||||||||||||||||||||||||
ANOVA | |||||||||||||||||||||||||||
Source of Variation | SS | df | MS | F | P-value | F crit | |||||||||||||||||||||
Sample | 0.00225502 | 1 | 0.002255 | 0.383482 | 0.538939 | 4.061706 | (This is the row variable or gender.) | ||||||||||||||||||||
Columns | 0.00623352 | 1 | 0.006234 | 1.060054 | 0.30883 | 4.061706 | (This is the column variable or Degree.) | ||||||||||||||||||||
Interaction | 0.00641719 | 1 | 0.006417 | 1.091288 | 0.301892 | 4.061706 | |||||||||||||||||||||
Within | 0.25873675 | 44 | 0.00588 | ||||||||||||||||||||||||
Total | 0.27364248 | 47 | |||||||||||||||||||||||||
Interpretation: | |||||||||||||||||||||||||||
For Ho: Average compas by gender are equal | Ha: Average compas by gender are not equal | ||||||||||||||||||||||||||
What is the p-value: | |||||||||||||||||||||||||||
Is P-value < 0.05? | |||||||||||||||||||||||||||
Do you reject or not reject the null hypothesis: | |||||||||||||||||||||||||||
If the null hypothesis was rejected, what is the effect size value (eta squared): | |||||||||||||||||||||||||||
Meaning of effect size measure: | |||||||||||||||||||||||||||
For Ho: Average compas are equal for all degrees | Ha: Average compas are not equal for all grades | ||||||||||||||||||||||||||
What is the p-value: | |||||||||||||||||||||||||||
Is P-value < 0.05? | |||||||||||||||||||||||||||
Do you reject or not reject the null hypothesis: | |||||||||||||||||||||||||||
If the null hypothesis was rejected, what is the effect size value (eta squared): | |||||||||||||||||||||||||||
Meaning of effect size measure: | |||||||||||||||||||||||||||
For: Ho: Interaction is not significant | Ha: Interaction is significant | ||||||||||||||||||||||||||
What is the p-value: | |||||||||||||||||||||||||||
Is P-value < 0.05? | |||||||||||||||||||||||||||
Do you reject or not reject the null hypothesis: | |||||||||||||||||||||||||||
If the null hypothesis was rejected, what is the effect size value (eta squared): | |||||||||||||||||||||||||||
Meaning of effect size measure: | |||||||||||||||||||||||||||
What do these decisions mean in terms of our equal pay question: | |||||||||||||||||||||||||||
Place data values in these columns | |||||||||||||||||||||||||||
<1 point> | 4 | Many companies consider the grade midpoint to be the “market rate” – what is needed to hire a new employee. | Salary | Midpoint | |||||||||||||||||||||||
Does the company, on average, pay its existing employees at or above the market rate? | |||||||||||||||||||||||||||
Null Hypothesis: | |||||||||||||||||||||||||||
Alt. Hypothesis: | |||||||||||||||||||||||||||
Statistical test to use: | |||||||||||||||||||||||||||
Place the cursor in B160 for test. | |||||||||||||||||||||||||||
What is the p-value: | |||||||||||||||||||||||||||
Is P-value < 0.05? | |||||||||||||||||||||||||||
What else needs to be checked on a 1-tail in order to reject the null? | |||||||||||||||||||||||||||
Do we REJ or Not reject the null? | |||||||||||||||||||||||||||
If the null hypothesis was rejected, what is the effect size value: | NA | ||||||||||||||||||||||||||
Meaning of effect size measure: | NA | ||||||||||||||||||||||||||
Interpretation: | |||||||||||||||||||||||||||
<2 points> | 5. | Using the results up thru this week, what are your conclusions about gender equal pay for equal work at this point? |