Maths homework

Please see attached for questions

  1. Here are two (simplified) versions of Roulette. Compute the probabilities of losing in each.
    1. (a) Las Vegas roulette. There are 38 (uniformly random) outcomes: two green numbers 0 and 00, and 36 red and black numbers 1 to36 (half red, half black). You bet on a red or black color (say red). You then win if you get a red number, and lose if you get a non-red number. What’s the probability that you lose?
    2. (b) Monte-Carlo roulette. There are 37 (again, uniformly random) outcomes: 0 is green, and 36 red and black numbers 1 to 36(again half red, half black). You bet on a red or black color (say red). You then win if you get a red number, and lose if you get a black number. If you get the green 0, you get a special reroll, where if you get a red then you get your money back (so you don’t win but don’t lose either), but you lose if you get a green or black on the reroll. What is your probability of losing?

Then, comment on the values themselves.

  1. Suppose you have 15 people coming together to form a committee of5 people. 6 out of 15 of the people are spies. What’s the probability that at least half of the committee are spies?
  2. True or false? (Warning: as in all my problems, you need to explain your answers to get any credit.)(a) (Z/6Z)∗ has a primitive root. (b) (Z/13Z)∗ has a generator. (c) (Z/15Z)∗ has a generator.
  3. Similar to Di e-Hellman, here’s the Zhang key-exchange : We pick a big prime p and a generator g. Alice has a secret a ∈ Z/(p − 1)Z. 1
  • Bobhasasecretb∈Z/(p−1)Z.
  • Alice sends ga to Bob. Bob sends gb to Alice.
  1. (a) Show that a key is indeed exchanged; that is, Alice and Bob can both compute g−a−b (mod p).
  2. (b) Showthatthiskey-exchangeisverybadcomparedtoDi e-Hellman.
  1. How fast (big O notation is enough) can you check if two lists of n integers each has at least one integer in common? (hint: sorting a list of n integers meaning putting them in order, takes O(n log(n)) time with the best algorithms we have).
  2. Suppose g is a generator for (Z/nZ)∗. Show that if x+y = 0 (mod φ(n)), then gx and gy are inverses (of each other). Is the converse of this state- ment true?

Calculate the price of your order

550 words
We'll send you the first draft for approval by September 11, 2018 at 10:52 AM
Total price:
The price is based on these factors:
Academic level
Number of pages
Basic features
  • Free title page and bibliography
  • Unlimited revisions
  • Plagiarism-free guarantee
  • Money-back guarantee
  • 24/7 support
On-demand options
  • Writer’s samples
  • Part-by-part delivery
  • Overnight delivery
  • Copies of used sources
  • Expert Proofreading
Paper format
  • 275 words per page
  • 12 pt Arial/Times New Roman
  • Double line spacing
  • Any citation style (APA, MLA, Chicago/Turabian, Harvard)

Our guarantees

Delivering a high-quality product at a reasonable price is not enough anymore.
That’s why we have developed 5 beneficial guarantees that will make your experience with our service enjoyable, easy, and safe.

Money-back guarantee

You have to be 100% sure of the quality of your product to give a money-back guarantee. This describes us perfectly. Make sure that this guarantee is totally transparent.

Read more

Zero-plagiarism guarantee

Each paper is composed from scratch, according to your instructions. It is then checked by our plagiarism-detection software. There is no gap where plagiarism could squeeze in.

Read more

Free-revision policy

Thanks to our free revisions, there is no way for you to be unsatisfied. We will work on your paper until you are completely happy with the result.

Read more

Privacy policy

Your email is safe, as we store it according to international data protection rules. Your bank details are secure, as we use only reliable payment systems.

Read more

Fair-cooperation guarantee

By sending us your money, you buy the service we provide. Check out our terms and conditions if you prefer business talks to be laid out in official language.

Read more
error: Content is protected !!